4763 Mechanics 3

1 (i)	$\left[\begin{array}{l} {[\text { Force }]=\mathrm{MLT}^{-2}} \\ {[\text { Density }]=\mathrm{ML}^{-3}} \end{array}\right.$	$\left.\begin{array}{\|ll} \text { B1 } & \\ \text { B1 } & 2 \end{array} \right\rvert\,$	
(ii)	$\begin{aligned} {[\eta] } & =\frac{[F][d]}{[A]\left[v_{2}-v_{1}\right]}=\frac{\left(\mathrm{MLT}^{-2}\right)(\mathrm{L})}{\left(\mathrm{L}^{2}\right)\left(\mathrm{LT}^{-1}\right)} \\ & =\mathrm{ML}^{-1} \mathrm{~T}^{-1} \end{aligned}$	$\left.\begin{array}{\|ll} \text { B1 } & \\ \text { M1 } & \\ \text { A1 } & \\ & 3 \end{array} \right\rvert\,$	for $[A]=L^{2}$ and $[v]=L T^{-1}$ Obtaining the dimensions of η
(iii)	$\left[\begin{array}{l} {\left[\frac{2 a^{2} \rho g}{9 \eta}\right]=\frac{\mathrm{L}^{2}\left(\mathrm{ML}^{-3}\right)\left(\mathrm{LT}^{-2}\right)}{\mathrm{ML}^{-1} \mathrm{~T}^{-1}}=\mathrm{LT}^{-1}} \\ \text { which is same as the dimensions of } v \end{array}\right.$	B1 M1 E1 3	For $[g]=\mathrm{LT}^{-2}$ Simplifying dimensions of RHS Correctly shown
(iv)	$\left(\mathrm{ML}^{-3}\right) \mathrm{L}^{\alpha}\left(\mathrm{LT}^{-1}\right)^{\beta}\left(\mathrm{ML}^{-1} \mathrm{~T}^{-1}\right)^{\gamma}$ is dimensionless $\left\lvert\, \begin{aligned} & \gamma=-1 \\ & -\beta-\gamma=0 \\ & -3+\alpha+\beta-\gamma=0 \\ & \alpha=1, \quad \beta=1 \end{aligned}\right.$	B1 cao M1 M1A1 A1 cao 5	
(v)	$\begin{aligned} R=\frac{\rho w v}{\eta} & =\frac{0.4 \times 25 \times 150}{1.6 \times 10^{-5}} \quad\left(=9.375 \times 10^{7}\right) \\ & =\frac{1.3 \times 5 v}{1.8 \times 10^{-5}} \end{aligned}$ Required velocity is $260 \mathrm{~m} \mathrm{~s}^{-1}$	M1 A1 A1 cao 3	Evaluating R Equation for v

$\begin{aligned} & 2 \\ & \text { (a)(i) } \end{aligned}$	$\begin{aligned} & T \cos \alpha=T \cos \beta+0.27 \times 9.8 \\ & \sin \alpha=\frac{1.2}{2.0}=\frac{3}{5}, \cos \alpha=\frac{4}{5} \quad\left(\alpha=36.87^{\circ}\right) \\ & \sin \beta=\frac{1.2}{1.3}=\frac{12}{13}, \cos \beta=\frac{5}{13} \quad\left(\beta=67.38^{\circ}\right) \\ & \frac{27}{65} T=2.646 \end{aligned}$ Tension is 6.37 N	M1 A1 B1 M1 E1	Resolving vertically (weight and at least one resolved tension) Allow T_{1} and T_{2} For $\cos \alpha$ and $\cos \beta$ [or α and β] Obtaining numerical equation for T e.g. $T(\cos 36.9-\cos 67.4)=0.27 \times 9.8$ (Condone 6.36 to 6.38)
(ii)	$\begin{aligned} T \sin \alpha+T \sin \beta & =0.27 \times \frac{v^{2}}{1.2} \\ 6.37 \times \frac{3}{5}+6.37 \times \frac{12}{13} & =0.27 \times \frac{v^{2}}{1.2} \\ v^{2} & =43.12 \end{aligned}$ Speed is $6.57 \mathrm{~ms}^{-1}$	M1 A1 M1 A1 4	Using $v^{2} / 1.2$ Allow T_{1} and T_{2} Obtaining numerical equation for v^{2}
(b)(i)	$\begin{aligned} 0.2 \times 9.8 & =0.2 \times \frac{u^{2}}{1.25} \\ u^{2} & =9.8 \times 1.25=12.25 \end{aligned}$ Speed is $3.5 \mathrm{~ms}^{-1}$	M1 E1 2	Using acceleration $u^{2} / 1.25$
(ii)	$\begin{aligned} \frac{1}{2} m\left(v^{2}-3.5^{2}\right) & =m g(1.25-1.25 \cos 60) \\ v^{2} & =24.5 \end{aligned}$ Radial component is $\frac{24.5}{1.25}$ $=19.6 \mathrm{~m} \mathrm{~s}^{-2}$ Tangential component is $g \sin 60$ $=8.49 \mathrm{~ms}^{-2}$	M1 M1 A1 M1 A1	Using conservation of energy With numerical value obtained by using energy (M0 if mass, or another term, included) For sight of $(m) g \sin 60^{\circ}$ with no other terms
(iii)	$\begin{aligned} & T+0.2 \times 9.8 \cos 60=0.2 \times 19.6 \\ & \text { Tension is } 2.94 \mathrm{~N} \end{aligned}$	M1 A1 cao 2	Radial equation (3 terms) This M1 can be awarded in (ii)

(vi)	e.g. Rope is light Rock is a particle No air resistance / friction / external forces Rope obeys Hooke's law / Perfectly elastic / Within elastic limit / No energy loss in rope	B1B1B1	Three modelling assumptions

4 (a)	$\begin{aligned} \int \frac{1}{2} y^{2} \mathrm{~d} x & =\int_{-a}^{a} \frac{1}{2}\left(a^{2}-x^{2}\right) \mathrm{d} x \\ & =\left[\frac{1}{2}\left(a^{2} x-\frac{1}{3} x^{3}\right)\right]_{-a}^{a} \\ & =\frac{2}{3} a^{3} \end{aligned} \quad \begin{aligned} \bar{y} & =\frac{\frac{2}{3} a^{3}}{\frac{1}{2} \pi a^{2}} \\ = & \frac{4 a}{3 \pi} \end{aligned}$	$\begin{array}{ll}\text { M1 } & \\ \text { A1 } & \\ \text { M1 } & \\ \text { E1 } & \\ & 4\end{array}$	For integral of $\left(a^{2}-x^{2}\right)$ Dependent on previous M1
(b)(i)		M1 A1 A1 M1 E1 6	π may be omitted throughout For integral of x^{2} or use of $V=\frac{1}{3} \pi r^{2} h$ and $r=m h$ For integral of x^{3} Dependent on M1 for integral of x^{3}
(ii)	$\begin{aligned} & m_{1}=\frac{1}{3} \pi \times 0.7^{2} \times 2.4 \rho=\frac{1}{3} \pi \rho \times 1.176 \\ & \mathrm{VG}_{1}=1.8 \\ & m_{2}=\frac{1}{3} \pi \times 0.4^{2} \times 1.1 \rho=\frac{1}{3} \pi \rho \times 0.176 \\ & \mathrm{VG}_{2}=1.3+\frac{3}{4} \times 1.1=2.125 \\ & \\ & \left(m_{1}-m_{2}\right)(\mathrm{VG})+m_{2}\left(\mathrm{VG}_{2}\right)=m_{1}\left(\mathrm{VG}_{1}\right) \\ & \quad(\mathrm{VG})+0.176 \times 2.125=1.176 \times 1.8 \end{aligned}$ Distance (VG) is 1.74 m	B1 B1 M1 F1 A1 $\mathbf{5}$	For m_{1} and m_{2} (or volumes) or $\frac{1}{4} \times 1.1$ from base Attempt formula for composite body
(iii)	VQG is a right-angle $\begin{aligned} \mathrm{VQ} & =\mathrm{VG} \cos \theta \text { where } \tan \theta=\frac{0.7}{2.4} \quad\left(\theta=16.26^{\circ}\right) \\ \mathrm{VQ} & =1.7428 \times \frac{24}{25} \\ & =1.67 \mathrm{~m} \end{aligned}$	$\begin{array}{ll}\text { M1 } & \\ \text { M1 } & \\ \text { A1 } & \\ & 3\end{array}$	ft is VG $\times 0.96$

